Cooperation Agreement for Small Form Factor Transceivers
AMP Inc., Hewlett-Packard Company, Lucent Technologies Inc.,
Nortel plc, Siemens AG Semiconductors, Sumitomo Electric Lightwave Corp.

I. Purpose of the Cooperation Agreement
Each party desires to establish internationally compatible sources of a fiber optic transceiver module in support of standards for fiber optic systems including Asynchronous Transfer Mode (ATM), FDDI, Fibre Channel, Fast Ethernet and Gigabit Ethernet, and Synchronous Optical Network (SONET)/Synchronous Digital Hierarchy (SDH) applications.

Each party further desires to establish uniformity in the industry for the Transceiver “Package Outline”, “Circuit Board Layout” and “Pin Function Definitions” described in Appendix A.

Each party expects that the establishment of compatible sources for an interchangeable transceiver module will allow the entire fiber optic market to grow more rapidly. This enhanced market growth is the express purpose of the Agreement.

The parties desire to establish compatible sources for additional products in the future.

II. Agreement
A. General
The parties agree to cooperate by supporting common product specifications for fiber optic transceivers with the package “Package Outline”, “Circuit Board Layout” and “Pin Function Definitions” described here and in Appendix A. Initial products utilizing this agreement may include Fiber Optic Transceivers at 100 to 1250 Mb/s for multimode and single mode fiber applications. Other fiber optic transceivers may follow as needed in the marketplace.

The mechanical dimensions shall be compatible with the package “Package Outline”, “Circuit Board Layout” and “Pin Function Definitions” as shown in Appendix A. The overall package dimensions shall not exceed the maximum indicated dimensions, and the pins and mounting posts shall be located such that the products are mechanically interchangeable in a circuit board.

The electrical and optical specifications shall be compatible with those enumerated in the appropriate standards (i.e. the IEEE 802.3z Gigabit Ethernet standard and the ITU G.957 Synchronous Digital Hierarchy standard). In addition, the parties may work together to recommend circuit layouts for electrical input and output terminations, and grounding practices.

The transceivers per this agreement will accept an optical connector such as the duplex LC, MT-RJ or the SC/DC connector. This agreement does not preclude any of the parties from offering Small Form Factor transceivers for other connectors.

Internal design of the product is entirely at the discretion of each party and is not covered by this Agreement.

The parties recognize that their products may not be identical, but need only meet the above criteria.
Small Form Factor Transceiver Multisource Agreement

B. Licensing and Fees

No technology licenses are granted herein and no fees for any such licenses are payable hereunder. However, the parties are not aware of any patents which would interfere with activities under this Agreement.

Each party is free to seek technology or other exchanges with other firms in order to support its activities under this Agreement.

C. Scope of the Agreement

The scope of this Agreement includes transceiver modules for transmission rates from 100 to 1250 Mb/s operating over multimode and single mode fiber.

Each party agrees to be responsible for its own development, manufacturing and selling in order to supply transceiver modules meeting the attached specifications.

This Agreement does not preclude any party from offering other products which may not meet the attached specifications.

Each party retains complete liberty regarding its methods of implementing a supply of product, e.g. by engineering effort or by technology licensing or transfer.

Each party also retains sole discretion in its choice of sales channels and distribution.

Each party affirms its intention to freely and openly compete in the market place with the parties as well as other competitors.

Each party expects to support products meeting the attached specifications for as long as market conditions warrant. No specific time limit is associated with this Agreement. The determination of market condition suitability is to be made by each party individually and in each party’s sole discretion.

III. Public Announcement

A. Announcing the Agreement

Each party agrees to announce this Agreement in a manner agreed upon by the parties. These announcements will mention all the parties who have signed this agreement.

Each party agrees to seek maximum public attention by means of such an announcement.

Each party agrees to contribute time and effort toward preparing and making such an announcement.

B. Promotion of the Agreement

After the Agreement is announced, each party may advertise or otherwise promote this Agreement in any way it deems appropriate. Mutual consent of the other party is required if the other party is to be mentioned by name.
IV. Other Vendors

A. Other Vendors Matching the Product Configuration

The parties recognize that additional vendors may choose to match the attached product specifications after this Agreement is announced.

Each party recognizes it is desirable and keeping with the intent of the Agreement for such additional vendors to support the transceiver mechanical dimensions and functional attributes described in Appendix A.

Therefore, each party agrees to encourage other vendors to support these product specifications.

B. Naming Other Vendors

Each party agrees to name the other parties when customers ask who intends to be a second source for the transceivers described in this Agreement. Each party agrees to name the others regardless as to whether another of the parties has already supplied similar transceiver module products to that customer.

An example of suggested wording is; “AMP, Hewlett-Packard, Lucent, Nortel, Siemens, and Sumitomo have signed a Cooperation Agreement relating to the establishment of Small Form Factor transceivers for multimode and single mode fiber operating in the range of 100 to 1250 Mb/s data rates.”

The parties are not obligated to provide any information other than the identities of the other parties.

V. Future Direction

A. Current Product

Should the parties agree to further explore technical and other exchanges pertaining to the products described in this Agreement, then this shall be under a separate agreement.

B. Withdrawal

The parties recognize that at some future time it may become less feasible to offer the products envisioned by this Agreement. A party may withdraw from its commitment to cooperate at its own discretion upon a 90-day notice to the other parties. This notice is necessary to allow the other parties to discontinue mentioning the withdrawing party as a participant in this Cooperation Agreement and to reconsider any jointly planned promotional activities.
VI. Agreement Signatures
Appendix A.1.1 Package Outline

Notes:
1. This page describes the maximum package outline, mounting holes, pins, and their relationships to each other.
2. Drilled to accommodate round or rectangular leads.
3. All 22 pins and posts are to be treated as a single pattern.
4. See SFP Transceiver Pin Function Definition Table for details.
5. Datum C does not exist for a specific connector implementation, an alternate surface or features can be chosen to establish a datum for the 22 pin pattern.
Appendix A.1.2 Circuit Board Layout

Notes:
1. This page describes the complete circuit board layout for the Small Form Factor Transceiver Multisource Agreement.
2. The circuit board layout provides a top-down view, with the actual dimensions in mm.
3. The pin numbers are indicated for ease of reference.

Small Form Factor Transceiver Multisource Agreement

January 6, 1998

Page 6
Appendix A.2.1 Transceiver Receiver Pin Function Definitions

Two versions of this transceiver are intended. The 10 pin version is intended for applications where the extra features of the 20 pin version are not required. The 20 pin version provides extra pins for features beyond data in and out such as recovered clock and laser transmitter monitors and alarms.

10 and 20 Pin Part Versions

(See Package Outline Drawing for Pin Positions within the Package.)

<table>
<thead>
<tr>
<th>10 Pin Part</th>
<th>20 Pin Part</th>
<th>Symbol</th>
<th>Notes</th>
<th>Functional Description</th>
<th>Logic Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>MS</td>
<td>MS</td>
<td>The holes in the circuit board must be tied to chassis ground.</td>
<td>Mounting Studs</td>
<td>N/A</td>
</tr>
<tr>
<td>No Pin</td>
<td>1</td>
<td>Photo-detector Bias</td>
<td>This hole in the circuit board must be tied to the most positive power supply.</td>
<td>Photodetector Bias: Optional Feature</td>
<td>N/A</td>
</tr>
<tr>
<td>No Pin</td>
<td>2</td>
<td>Vee<sub>T</sub></td>
<td></td>
<td>Receiver Signal Ground</td>
<td>N/A</td>
</tr>
<tr>
<td>No Pin</td>
<td>3</td>
<td>Vee<sub>T</sub></td>
<td></td>
<td>Receiver Signal Ground</td>
<td>N/A</td>
</tr>
<tr>
<td>No Pin</td>
<td>4</td>
<td>Clk-</td>
<td>If feature not used do not connect.</td>
<td>Received Recovered Clock Out Bar: Optional Feature</td>
<td>PECL</td>
</tr>
<tr>
<td>No Pin</td>
<td>5</td>
<td>Clk+</td>
<td>If feature not used do not connect.</td>
<td>Received Recovered Clock Out: Optional Feature</td>
<td>PECL</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>Vee<sub>T</sub></td>
<td></td>
<td>Receiver Signal Ground</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>Vcc<sub>T</sub></td>
<td></td>
<td>Receiver Power Supply</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>SD</td>
<td>Signal Detect</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>RD-</td>
<td>Received Data Out Bar</td>
<td>PECL</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>RD+</td>
<td>Received Data Out</td>
<td>PECL</td>
<td></td>
</tr>
</tbody>
</table>

10 Pin Part

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Notes</th>
<th>Functional Description</th>
<th>Logic Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>The holes in the circuit board must be tied to chassis ground.</td>
<td>Mounting Studs</td>
<td>N/A</td>
</tr>
<tr>
<td>No Pin</td>
<td>1 Photo-detector Bias</td>
<td>This hole in the circuit board must be tied to the most positive power supply.</td>
<td>Photodetector Bias: Optional Feature</td>
</tr>
<tr>
<td>No Pin</td>
<td>2 Vee<sub>T</sub></td>
<td></td>
<td>Receiver Signal Ground</td>
</tr>
<tr>
<td>No Pin</td>
<td>3 Vee<sub>T</sub></td>
<td></td>
<td>Receiver Signal Ground</td>
</tr>
<tr>
<td>No Pin</td>
<td>4 Clk-</td>
<td>If feature not used do not connect.</td>
<td>Received Recovered Clock Out Bar: Optional Feature</td>
</tr>
<tr>
<td>No Pin</td>
<td>5 Clk+</td>
<td>If feature not used do not connect.</td>
<td>Received Recovered Clock Out: Optional Feature</td>
</tr>
<tr>
<td>1 Vee<sub>T</sub></td>
<td></td>
<td></td>
<td>Receiver Signal Ground</td>
</tr>
<tr>
<td>2 Vcc<sub>T</sub></td>
<td></td>
<td></td>
<td>Receiver Power Supply</td>
</tr>
<tr>
<td>3 SD</td>
<td>Signal Detect</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>4 RD-</td>
<td>Received Data Out Bar</td>
<td>PECL</td>
<td></td>
</tr>
<tr>
<td>5 RD+</td>
<td>Received Data Out</td>
<td>PECL</td>
<td></td>
</tr>
</tbody>
</table>
Appendix A.2.2 Transceiver Transmitter Pin Function Definitions

10 and 20 Pin Part Versions
(See Package Outline Drawing for Pin Positions within the Package.)

<table>
<thead>
<tr>
<th>10 Pin Part</th>
<th>20 Pin Part</th>
<th>Symbol</th>
<th>Notes</th>
<th>Functional Description</th>
<th>Logic Family</th>
</tr>
</thead>
</table>
| MS | MS | Vcc | The holes in the circuit board must be tied to chassis ground. | Mounting Studs
The mounting studs are provided for transceiver mechanical attachment to the circuit board. They may also provide an optional connection of the transceiver to the equipment chassis ground. | N/A |
| 6 | 11 | Vcc | Transmitter Power Supply | N/A |
| 7 | 12 | Vcc | Transmitter Signal Ground | N/A |
| 8 | 13 | TDis | Optional use for Laser based products only | Transmitter Disable: Optional Feature
Transmitter Output Disabled:
(Vcc - 1.3V) < V < Vcc
Transmitter Output Enabled:
Vee < V < (Vee + 0.8V) or open circuit | TTL |
| 9 | 14 | TD+ | Transmitter Data In
An internal 50 ohm termination will be provided for gigabit/sec transceivers consisting of a 100 ohm resistor between the TD+ and TD- pins. No internal termination will be provided for lower speed parts (622 Mb/s and below). | PECL |
| 10 | 15 | TD- | Transmitter Data In Bar
See TD+ pin for terminations. | PECL |
| No Pin | 16 | Vee | Transmitter Signal Ground | N/A |
| No Pin | 17 | Bmon(-)| If feature not used do not connect. | Laser Diode Bias Current Monitor - Negative End: Optional Feature
The laser bias current is accessible as a dc-voltage by measuring the voltage developed across pins 17 and 18. Dividing the voltage by 10 ohms will yield the value of the laser bias current. The stand-off resistors should be 3k ohms. At an ambient of 25 deg C, the voltage should range up to a maximum of 0.70 volts. | N/A |
| No Pin | 18 | Bmon(+)| If feature not used do not connect. | Laser Diode Bias Current Monitor - Positive End: Optional Feature
See pin 17 description. | N/A |
| No Pin | 19 | Pmon(-)| If feature not used do not connect. | Laser Diode Optical Power Monitor - Negative End: Optional Feature
The backface diode monitor current is accessible as a voltage proportional to the photocurrent through a 200 ohm resistor between pins 19 and 20. The stand-off resistors should be 3k ohms. At a 50% duty cycle, this voltage can range between 0.01 and 0.20 volts. | N/A |
| No Pin | 20 | Pmon(+)| If feature not used do not connect. | Laser Diode Optical Power Monitor - Positive End: Optional Feature
See pin 19 description. | N/A |